Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.830
Filtrar
1.
Sci Rep ; 14(1): 7624, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561345

RESUMO

It is known that titanium (Ti) implant surfaces exhibit poor antibacterial properties and osteogenesis. In this study, chitosan particles loaded with aspirin, amoxicillin or aspirin + amoxicillin were synthesized and coated onto implant surfaces. In addition to analysing the surface characteristics of the modified Ti surfaces, the effects of the modified Ti surfaces on the adhesion and viability of rat bone marrow-derived stem cells (rBMSCs) were evaluated. The metabolic activities of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms on the modified Ti surfaces were also measured in vitro. Moreover, S. aureus was tested for its antibacterial effect by coating it in vivo. Using water as the droplet medium, the contact angles of the modified Ti surfaces increased from 44.12 ± 1.75° to 58.37 ± 4.15°. In comparison to those of the other groups tested, significant increases in rBMSC adhesion and proliferation were observed in the presence of aspirin + amoxicillin-loaded microspheres, whereas a significant reduction in the metabolic level of biofilms was observed in the presence of aspirin + amoxicillin-loaded microspheres both in vitro and in vivo. Aspirin and amoxicillin could be used in combination to coat implant surfaces to mitigate bacterial activities and promote osteogenesis.


Assuntos
Amoxicilina , Quitosana , Indóis , Polímeros , Ratos , Animais , Amoxicilina/farmacologia , Aspirina/farmacologia , Titânio/farmacologia , Quitosana/farmacologia , Osteogênese , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia
2.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583018

RESUMO

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Assuntos
Nanoporos , Titânio , Titânio/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/genética , Eletrólitos/farmacologia , Íons/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
3.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542241

RESUMO

As the population ages, the number of patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) continues to increase. Infections after primary arthroplasty are rare but have high rates of morbidity and mortality, as well as enormous financial implications for healthcare systems. Numerous methods including the use of superhydrophobic coatings, the incorporation of antibacterial agents, and the application of topographical treatments have been developed to reduce bacterial attachment to medical devices. However, most of these methods require complex manufacturing processes. Thus, the main purpose of this study was to apply biocoatings to titanium (Ti) surfaces to increase their infection resistance and osteoconductivity via simple processes, without organic reagents. We modified titanium surfaces with a combination of aminomalononitrile (AMN) and an antibiotic-loaded mesoporous bioactive glass (MBG) and evaluated both the antibacterial effects of the coating layer and its effect on osteoblast proliferation and differentiation. The properties of the modified surface, such as the hydrophilicity, roughness, and surface morphology, were characterized via contact angle measurements, atomic force microscopy, and scanning electron microscopy. The cell proliferation reagent WST-1 assay and the alkaline phosphatase (ALP) assay were used to determine the degrees of adhesion and differentiation, respectively, of the MG-63 osteoblast-like cells on the surface. Antimicrobial activity was evaluated by examining the survival rate and inhibition zone of Escherichia coli (E. coli). The AMN coating layer reduced the water contact angle (WCA) of the titanium surface from 87° ± 2.5° to 53° ± 2.3° and this change was retained even after immersion in deionized water for five weeks, demonstrating the stability of the AMN coating. Compared with nontreated titanium and polydopamine (PDA) coating layers, the AMN surface coating increased MG-63 cell attachment, spreading, and early ALP expression; reduced E. coli adhesion; and increased the percentage of dead bacteria. In addition, the AMN coating served as an adhesion layer for the subsequent deposition of MBG-containing antibiotic nanoparticles. The synergistic effects of the AMN layer and antibiotics released from the MBG resulted in an obvious E. coli inhibition zone that was not observed in the nontreated titanium group.


Assuntos
Escherichia coli , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Interações Hidrofóbicas e Hidrofílicas , Bactérias , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Osteoblastos
4.
Iran Biomed J ; 28(1): 38-45, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477251

RESUMO

Background: The surface properties of dental and orthopedic implants are directly related to their osseointegration rate. Coating and/or modifying the implant surface might reduce the time of healing. In this study, we aimed to examine the effects of a hybrid surface consisting of a brushite surface coating and cross-linked water-soluble eggshell membrane protein on the osseointegration of titanium (Ti) screws under in vivo conditions. Methods: Twenty Ti alloy screws were implanted monocortically in anteromedial regions of New Zealand rabbit tibiae. Ten screws were untreated and used as controls. The remaining 10 screws were coated with calcium phosphate and following cross-linked with ostrich eggshell membrane protein. All rabbits were sacrificed six weeks after the surgery. Peri-screw tissues were evaluated by micro-computed tomography (µ-CT), histological and histomorphometrical methods. Results: The µ-CT assessments indicated that the experimental group had significantly higher mean bone surface area (BSA) and trabeculae number (TbN) than those of the control group (p ˂ 0.05). Bone surface area (BV), trabecular separation (TbSp), trabecular thickness (TbTh), and bone mineral density (BMD) scores of the control and experimental groups were quite similar (p > 0.05). The vascularization score of the experimental group was significantly higher than the control group (4.29 vs. 0.92%). No sign of the graft-versus-host reaction was observed. Conclusion: Our findings reveal that coating Ti alloy implants with calcium phosphate cross-linked with ostrich eggshell membrane protein increases the osseointegration of Ti alloy screws by increasing the bone surface area, number of trabeculae and vascularization in the implant site.


Assuntos
Osseointegração , Titânio , Coelhos , Animais , Titânio/farmacologia , Água , Ligas/farmacologia , Microtomografia por Raio-X , Casca de Ovo , Materiais Revestidos Biocompatíveis/farmacologia , Fosfatos de Cálcio/farmacologia , Proteínas de Membrana , Propriedades de Superfície
5.
J Biomed Mater Res B Appl Biomater ; 112(4): e35403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520706

RESUMO

For decades, titanium implants have shown impressive advantages in bone repair. However, the preparation of implants with excellent antimicrobial properties as well as better osseointegration ability remains difficult for clinical application. In this study, black phosphorus nanosheets (BPNSs) were doped into hydroxyapatite (HA) coatings using electrophoretic deposition. The coatings' surface morphology, roughness, water contact angle, photothermal properties, and antibacterial properties were investigated. The BP/HA coating exhibited a surface roughness of 59.1 nm, providing an ideal substrate for cell attachment and growth. The water contact angle on the BP/HA coating was measured to be approximately 8.55°, indicating its hydrophilic nature. The BPNSs demonstrated efficient photothermal conversion, with a temperature increase of 42.2°C under laser irradiation. The BP/HA composite coating exhibited a significant reduction in bacterial growth, with inhibition rates of 95.6% and 96.1% against Staphylococcus aureus and Escherichia coli. In addition, the cytocompatibility of the composite coating was evaluated by cell adhesion, CCK8 and AM/PI staining; the effect of the composite coating in promoting angiogenesis was assessed by scratch assay, transwell assay, and protein blotting; and the osteoinductivity of the composite coating was evaluated by alkaline phosphatase assay, alizarin red staining, and Western blot. The results showed that the BP/HA composite coating exhibited superior performance in promoting biological functions such as cell proliferation and adhesion, antibacterial activity, osteogenic differentiation, and angiogenesis, and had potential applications in vascularized bone regeneration.


Assuntos
Durapatita , Titânio , Durapatita/farmacologia , Durapatita/química , Titânio/farmacologia , Titânio/química , Osseointegração , Osteogênese , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Água/farmacologia , Propriedades de Superfície
6.
ACS Biomater Sci Eng ; 10(4): 2100-2115, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502729

RESUMO

Over the past decade, bone tissue engineering has been at the core of attention because of an increasing number of implant surgeries. The purpose of this study was to obtain coatings on titanium (Ti) implants with improved properties in terms of biomedical applications and to investigate the effect of ultrasound (US) on these properties during the micro-arc oxidation (MAO) process. The influence of various process parameters, such as time and current density, as well as US mode, on the properties of such coatings was evaluated. Novel porous calcium-phosphate-based coatings were obtained on commercially pure Ti. Their microstructure, chemical composition, topography, wettability, nanomechanical properties, thickness, adhesion to the substrate, and corrosion resistance were analyzed. In addition, cytocompatibility evaluation was checked with the human osteoblasts. The properties of the coatings varied significantly, depending on applied process parameters. The US application during the MAO process contributes to the increase of coating thickness, porosity, roughness, and skewness, as well as augmented calcium incorporation. The most advantageous coating was obtained at a current of 136 mA, time 450 s, and unipolar rectangular US, as it exhibits high porosity, adequate wettability, and beneficial skewness, which enabled increased adhesion and proliferation of osteoblasts during in vitro studies. Finally, the conducted research demonstrated the influence of various UMAO process parameters, which allowed for the selection of appropriate Ti implant modification for specific biomedical utilization.


Assuntos
Cálcio , Materiais Revestidos Biocompatíveis , Humanos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Cálcio/química , Engenharia Biomédica , Oxirredução , Molhabilidade
7.
Biomater Adv ; 159: 213815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447383

RESUMO

Infection is one of the main issues connected to implantation of biomedical devices and represents a very difficult issue to tackle, for clinicians and for patients. This study aimed at tackling infection through antibacterial nanostructured silver coatings manufactured by Ionized Jet Deposition (IJD) for application as new and advanced coating systems for medical devices. Films composition and morphology depending on deposition parameters were investigated and their performances evaluated by correlating these properties with the antibacterial and antibiofilm efficacy of the coatings, against Escherichia coli and Staphylococcus aureus strains and with their cytotoxicity towards human cell line fibroblasts. The biocompatibility of the coatings, the nanotoxicity, and the safety of the proposed approach were evaluated, for the first time, in vitro and in vivo by rat subcutaneous implant models. Different deposition times, corresponding to different thicknesses, were selected and compared. All silver coatings exhibited a highly homogeneous surface composed of nanosized spherical aggregates. All coatings having a thickness of 50 nm and above showed high antibacterial efficacy, while none of the tested options caused cytotoxicity when tested in vitro. Indeed, silver films impacted on bacterial strains viability and capability to adhere to the substrate, in a thickness-dependent manner. The nanostructure obtained by IJD permitted to mitigate the toxicity of silver, conferring strong antibacterial and anti-adhesive features, without affecting the coatings biocompatibility. At the explant, the coatings were still present although they showed signs of progressive dissolution, compatible with the release of silver, but no cracking, delamination or in vivo toxicity was observed.


Assuntos
Nanoestruturas , Prata , Humanos , Ratos , Animais , Prata/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli
8.
Int J Biol Macromol ; 264(Pt 1): 130524, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442832

RESUMO

Silk fibroin coatings on biomedical magnesium alloys have garnered significant attention due to their enhanced corrosion resistance and biocompatibility. However, the utilization of wild A. pernyi silk fibroin, known for its RGD sequence that facilitates tissue regeneration, presents a challenge for corrosion-resistant coatings on magnesium alloys due to its weak adhesion and high dissolution rate. In this study, we employed hexafluoroisopropanol as a solvent to blend A. pernyi silk fibroin with B. mori silk fibroin. The resulting blended fibroin coating at a 3:7 mass ratio exhibited a heterogeneous nucleation effect, enhancing ß-sheet content (32.3 %) and crystallinity (28.6 %). This improved ß-sheet promoted the "labyrinth effect" with an Icorr of 2.15 × 10-6 A cm-2, resulting in significantly improved corrosion resistance, which is two orders of magnitude lower than that of pure magnesium alloy. Meanwhile, the increased content of exposed serine in zigzag ß-sheet contributes to a higher adhesion strength. Cell cytotoxicity evaluation confirmed the enhanced cell adhesion and bioactivity. This work provides a facile approach for wild A. pernyi silk fibroin coatings on magnesium alloys with enhanced corrosion resistance, adhesion and biocompatibility.


Assuntos
Fibroínas , Oligoelementos , Fibroínas/farmacologia , Magnésio/farmacologia , Corrosão , Ligas/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia
9.
Dent Mater J ; 43(2): 269-275, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38417859

RESUMO

We aimed to improve the biocompatibility and osteoinductive potential of Ti implants using a simulated intraoral hydroxyapatite (HAp) coating. We devised a novel surface treatment for aggressive induction of osteoblast adhesion and bone regeneration on the implant surface. A thin α-tricalcium phosphate (α-TCP) film was deposited on the implant surface using a pulsed Er:YAG laser. The coating was converted to HAp through artificial saliva immersion, which was confirmed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM showed needle-like HAp crystals on the Ti disks and sandblasted implant surfaces after immersion in artificial saliva for 96 h. Microcomputed tomography and histological evaluation 4 and 8 weeks after implantation into beagle dog mandibles showed that the HAp-coated implant was biocompatible and exhibited superior osteoinduction compared to that of sandblasted implants. Coating the implant surface with HAp using an Er:YAG laser has potential as a new method of the implant-surface debridement.


Assuntos
Implantes Dentários , Lasers de Estado Sólido , Cães , Animais , Durapatita/farmacologia , Durapatita/química , Saliva Artificial , Microtomografia por Raio-X , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Titânio/farmacologia , Titânio/química , Microscopia Eletrônica de Varredura , Propriedades de Superfície
10.
Colloids Surf B Biointerfaces ; 236: 113808, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422669

RESUMO

In the cardiovascular field, coating containing copper used to catalyze NO (nitric oxide) production on non-degradable metal surfaces have shown unparalleled expected performance, but there are few studies on biodegradable metal surfaces. Magnesium-based biodegradable metals have been applied in cardiovascular field in large-scale because of their excellent properties. In this study, the coating of copper loaded in silk fibroin is fabricated on biodegradable ZE21B alloy. Importantly, the different content of copper is set to investigate the effects of on the degradation performance and cell behavior of magnesium alloy. Through electrochemical and immersion experiments, it is found that high content of copper will accelerate the corrosion of magnesium alloy. The reason is the spontaneous micro-batteries between copper and magnesium with the different standard electrode potentials, that is, the galvanic corrosion accelerates the corrosion of magnesium alloy. Moreover, the coating formed through silk fibroin by the right amount copper not only have a protective effect on the ZE21B alloy substrate, but also promotes the adhesion and proliferation of endothelial cells in blood vessel micro-environment. The production of NO catalyzed by copper ions makes this trend more significant, and inhibits the excessive proliferation of smooth muscle cells. These findings can provide guidance for the amount of copper in the coating on the surface of biodegradable magnesium alloy used for cardiovascular stent purpose.


Assuntos
Fibroínas , Fibroínas/farmacologia , Fibroínas/química , Cobre/farmacologia , Ligas/farmacologia , Ligas/química , Magnésio/farmacologia , Magnésio/química , Células Endoteliais , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Corrosão
11.
ACS Appl Mater Interfaces ; 16(8): 10601-10622, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38376231

RESUMO

Stainless steel (316L SS) has been widely used in orthopedic, cardiovascular stents, and other biomedical implant applications due to its strength, corrosion resistance, and biocompatibility. To address the weak interaction between steel implants and tissues, it is a widely adopted strategy to enhance implant performance through the application of bioactive coatings. In this study, Cu-doped brushite coatings were deposited successfully through pulse electrodeposition on steel substrates facilitated with a biosurfactant (BS) (i.e., surfactin). Further, the combined effect of various concentrations of Cu ions and BS on the structural, electrochemical, and biological properties was studied. The X-ray diffraction (XRD) confirms brushite composition with Cu substitution causing lattice contraction and a reduced crystallite size. The scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) studies reveal the morphological changes of the coatings with the incorporation of Cu, which is confirmed by X-ray photoelectron spectroscopy (XPS) and elemental mapping. The Fourier transform infrared (FTIR) and Raman spectroscopy confirm the brushite and Cu doping in the coatings, respectively. Increased surface roughness and mechanical properties of Cu-doped coatings were analyzed by using atomic force microscopic (AFM) and nanohardness tests, respectively. Electrochemical assessments demonstrate corrosion resistance enhancement in Cu-doped coatings, which is further improved with the addition of biosurfactants. In vitro biomineralization studies show the Cu-doped coating's potential for osseointegration, with added stability. The cytocompatibility of the coatings was analyzed using live/dead and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays; cell adhesion, proliferation, and migration studies were evaluated using SEM. Antibacterial assays highlight significant improvement in the antibacterial properties of Cu-doped coatings with BS. Thus, the developed Cu-doped brushite coatings with BS demonstrate their potential in the realm of biomedical implant technologies, paving the way for further exploration.


Assuntos
Fosfatos de Cálcio , Aço Inoxidável , Fosfatos de Cálcio/química , Aço Inoxidável/química , Antibacterianos/química , Corrosão , Stents , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
12.
J Biomed Mater Res B Appl Biomater ; 112(2): e35380, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348496

RESUMO

Zirconia implants are gaining attention as a viable alternative to titanium implants due to their comparable osseointegration development, improved soft tissue adaptation, and enhanced aesthetics. An encouraging avenue for improving zirconia implant properties involves the potential application of bioactive coatings to their surfaces. These coatings have shown potential for inducing hydroxyapatite formation, crucial for bone proliferation, and improving implant mechanical properties. This study aimed to evaluate the effect of coating zirconia implants with two bioactive glasses, 45S5 and BioK, on osteogenesis in vitro and osseointegration in vivo. Zirconia samples and implants were prepared using Zpex zirconia powder and blocks, respectively. The samples were divided into three groups: polished zirconia (ZRC), zirconia coated with 45S5 bioglass (Z + 45S5), and zirconia coated with BioK glass (Z + BK). Coatings were applied using a brush and sintered at 1200°C. Chemical analysis of the coatings was carried out using x-ray diffraction and Fourier Transform Infrared Spectroscopy. Surface topography and roughness were characterized using scanning electron microscopy and a roughness meter. In vitro experiments used mesenchymal cells from Wistar rat femurs, and the coated zirconia implants were found to promote cell viability, protein synthesis, alkaline phosphatase activity, and mineralization, indicating enhanced osteogenesis. In vivo experiments with 18 rats showed positive results for bone formation and osseointegration through histological and histomorphometric analysis and a push-out test. The findings indicate that bioactive glass coatings have the potential to improve cell differentiation, bone formation, and osseointegration in zirconia implants.


Assuntos
Cerâmica , Implantes Dentários , Próteses e Implantes , Zircônio , Ratos , Animais , Ratos Wistar , Osseointegração , Propriedades de Superfície , Titânio/farmacologia , Titânio/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Microscopia Eletrônica de Varredura
13.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397066

RESUMO

To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.


Assuntos
Anti-Infecciosos , Grafite , Nanoestruturas , Grafite/farmacologia , Poliésteres , Materiais Revestidos Biocompatíveis/farmacologia
14.
J Mater Chem B ; 12(8): 2083-2098, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38284627

RESUMO

Calcium phosphates are widely studied in orthopedics and dentistry, to obtain biomimetic and antibacterial implants. However, the multi-substituted composition of mineralized tissues is not fully reproducible from synthetic procedures. Here, for the first time, we investigate the possible use of a natural, fluorapatite-based material, i.e., Lingula anatina seashell, resembling the composition of bone and enamel, as a biomaterial source for orthopedics and dentistry. Indeed, thanks to its unique mineralization process and conditions, L. anatina seashell is among the few natural apatite-based shells, and naturally contains ions having possible antibacterial efficacy, i.e., fluorine and zinc. After characterization, we explore its deposition by ionized jet deposition (IJD), to obtain nanostructured coatings for implantable devices. For the first time, we demonstrate that L. anatina seashells have strong antibacterial properties. Indeed, they significantly inhibit planktonic growth and cell adhesion of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The two strains show different susceptibility to the mineral and organic parts of the seashells, the first being more susceptible to zinc and fluorine in the mineral part, and the second to the organic (chitin-based) component. Upon deposition by IJD, all films exhibit a nanostructured morphology and sub-micrometric thickness. The multi-doped, complex composition of the target is maintained in the coating, demonstrating the feasibility of deposition of coatings starting from biogenic precursors (seashells). In conclusion, Lingula seashell-based coatings are non-cytotoxic with strong antimicrobial capability, especially against Gram-positive strains, consistently with their higher susceptibility to fluorine and zinc. Importantly, these properties are improved compared to synthetic fluorapatite, showing that the films are promising for antimicrobial applications.


Assuntos
Exoesqueleto , Anti-Infecciosos , Animais , Biomimética , Flúor , Materiais Revestidos Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Apatitas/farmacologia , Zinco/farmacologia , Odontologia
15.
Biomacromolecules ; 25(2): 1180-1190, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38240673

RESUMO

In recent years, the utilization of medical devices has gradually increased and implantation procedures have become common treatments. However, patients are susceptible to the risk of implant infections. This study utilized chemical grafting to immobilize polyethylenimine (QPEI) and hyaluronic acid (HA) on the surface of the mesh to improve biocompatibility while being able to achieve antifouling antimicrobial effects. From the in vitro testing, PP-PDA-Q-HA exhibited a high antibacterial ratio of 93% against S. aureus, 93% against E. coli, and 85% against C. albicans. In addition, after five rounds of antimicrobial testing, the coating continued to exhibit excellent antimicrobial properties; PP-PDA-Q-HA also inhibits the formation of bacterial biofilms. In addition, PP-PDA-Q-HA has good hemocompatibility and cytocompatibility. In vivo studies in animal implantation infection models also demonstrated the excellent antimicrobial properties of PP-PDA-Q-HA. Our study provides a promising strategy for the development of antimicrobial surface medical materials with excellent biocompatibility.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Animais , Humanos , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes , Anti-Infecciosos/farmacologia , Hérnia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície
16.
Carbohydr Polym ; 327: 121666, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171658

RESUMO

Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.


Assuntos
Dextranos , Magnésio , Magnésio/farmacologia , Dextranos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Regeneração Óssea , Osteogênese , Durapatita/farmacologia , Apoptose , Tecidos Suporte
17.
Biomaterials ; 305: 122457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171117

RESUMO

Periprosthetic infection is a devastating postimplantation complication in which a biofilm layer harboring invasive microorganisms forms around orthopedic implants, leading to severe implant failure and patient morbidity. Despite the development of several infection-triggered antibiotic release approaches, most current antibacterial coatings are susceptible to undesired antibiotic leakage or mechanical disintegration during prosthesis installation. Herein, we propose a self-controllable proteinic antibacterial coating capable of both long-lasting adherence onto titanium implant substrates over the implant fixation period and instantaneous bacterial eradication. Importantly, the pH-dependent reversible metal coordination of mussel adhesive protein (MAP) enabled bacterial concentration-dependent antibiotic delivery in response to infection-induced acidification. In addition, the MAP coating exhibited superior self-healable adhesive properties and scratch resistance, which enabled to avert issues associated with mechanical damages, including peeling and cracking, often occurring in conventional implant coating systems. The gentamicin-loaded MAP coating exhibited complete inhibition of bacterial growth in vivo against Staphylococcus aureus penetrations during implantation surgery (immediate infection) and even 4 weeks after implantation (delayed infection). Thus, our antibiotic-loaded MAP hydrogel coating can open new avenues for self-defensive antibiotic prophylaxis to achieve instant and sustainable bacteriocidal activity in orthopedic prostheses. © 2017 Elsevier Inc. All rights reserved.


Assuntos
Antibacterianos , Próteses e Implantes , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Metais , Titânio/química , Bactérias , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
18.
J Mech Behav Biomed Mater ; 151: 106366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176198

RESUMO

Iodine-containing coatings were prepared on pure Ti surfaces via electrochemical deposition to enhance their antibacterial properties. The factors influencing iodine content were analyzed using an orthogonal experiment. The electrochemically deposited samples were characterized using scanning electron microscopy with energy dispersive spectroscopy and X-ray photoelectron spectroscopy, and their antibacterial properties and cytotoxicity were evaluated. The results showed that changing the deposition time is an effective way to control the iodine content. The iodine content, coating thickness, and adhesion of the samples increased with deposition time. Iodine in the coatings mainly exists in three forms, which are I2, I3-, and pentavalent iodine. For samples with iodine-containing coatings, the antibacterial ratios against E. coli and S. aureus were greater than 90% and increased with increasing iodine content. Although the samples with iodine-containing coatings showed some inhibition of the proliferation of MC3T3-E1 cells, the cell viabilities were all higher than 80%, suggesting that iodine-containing coatings are biosafe.


Assuntos
Materiais Revestidos Biocompatíveis , Iodo , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Iodo/farmacologia , Staphylococcus aureus , Escherichia coli , Titânio/farmacologia , Antibacterianos/farmacologia , Propriedades de Superfície
19.
Langmuir ; 40(2): 1286-1294, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38171006

RESUMO

Nitric oxide (NO)-releasing coating is promising to enhance the biocompatibility of medical devices. In this study, polyurethane (PU) and S-nitrosated keratin (KSNO) were dissolved with dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF) to prepare a coating solution. This solution is facile to form a porous coating on various substrates based on solvent-evaporation-induced phase separation (SEIPS). The coating could continuously release NO up to 200 h in the presence of ascorbic acid (Asc). In addition, the coating could accelerate endothelialization by promoting the viability of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation of human umbilical artery smooth muscle cells (HUASMCs). Furthermore, the coating had good antibacterial activity and blood compatibility. Taken together, this universal coating provides wider potential applications in the field of cardiovascular implants.


Assuntos
Antibacterianos , Óxido Nítrico , Humanos , Óxido Nítrico/farmacologia , Porosidade , Células Endoteliais da Veia Umbilical Humana , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia
20.
Colloids Surf B Biointerfaces ; 234: 113744, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183871

RESUMO

Treatment implant-associated infections remains a severe challenge in the clinical practice. This work focuses on the fabrication of Cu-containing porous TiO2 coatings on titanium (Ti) by a combination of magnetron sputtering and dealloying techniques. Additionally, photothermal therapy is employed to enhance the effect of Cu ions in preventing bacterial infection. After the dealloying, most of Cu element was removed from the magnetron sputtered Cu-containing films, and porous TiO2 coatings were prepared on Ti. The formation of porous nanostructures significantly enhanced the photothermal conversion performance under NIR-II light irradiation. The combined effect of hyperthermia and Cu ions demonstrated enhanced antibacterial activity in both in vitro and in vivo experiments, and the antibacterial efficiency can reach 99% against Streptococcus mutans. Moreover, the porous TiO2 coatings also exhibited excellent biocompatibility. This modification of the titanium surface structure through dealloying changes may offer a novel approach to enhance the antimicrobial properties of titanium implants.


Assuntos
Staphylococcus aureus , Titânio , Titânio/farmacologia , Titânio/química , Porosidade , Antibacterianos/farmacologia , Antibacterianos/química , Íons , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...